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Abstract— This paper proposes an intent-aware multi-agent
planning framework as well as a learning algorithm. Under this
framework, an agent plans in the goal space to maximize the
expected utility. The planning process takes the belief of other
agents’ intents into consideration. Instead of formulating the
learning problem as a partially observable Markov decision
process (POMDP), we propose a simple but effective linear
function approximation of the utility function. It is based on
the observation that for humans, other people’s intents will pose
an influence on our utility for a goal. The proposed framework
has several major advantages: i) it is computationally feasible
and guaranteed to converge. ii) It can easily integrate existing
intent prediction and low-level planning algorithms. iii) It
does not suffer from sparse feedbacks in the action space.
We experiment our algorithm in a real-world problem that
is non-episodic, and the number of agents and goals can
vary over time. Our algorithm is trained in a scene in which
aerial robots and humans interact, and tested in a novel scene
with a different environment. Experimental results show that
our algorithm achieves the best performance and human-like
behaviors emerge during the dynamic process.

I. INTRODUCTION

The success of human species could be attributed to
our remarkable adaptability to both the physical world and
the social environment. Human social intelligence endows
us the ability to reason about the state of mind of other
agents, and this mental state reasoning widely influences
decisions made in our daily lives. For example, driving safely
requires us to reason about the intents of other drivers and
make decisions accordingly. This kind of subtle intent-aware
decision-making (theory of mind) behavior is ubiquitous in
human activities, but virtually absent from even the most
advanced artificial intelligence and robotic systems.

Intent-aware decision making is particularly useful in
multi-agent systems, which can find applications in a wide
variety of domains including robotic teams, distributed con-
trol, collaborative decision support systems, etc. Ideally,
rather than being pre-programmed with intent-aware plan-
ning behaviors, artificial intelligent agents should be able
to learn the behavior in a way similar to human social
adaptation. This is because designing a good behavior is
difficult or even impossible, and multi-agent environments
are highly non-stationary.

Fortunately, advances in machine learning and robotics
algorithms provide powerful tools for solving this learning
and planning problem. To design an appropriate framework
for learning agents to plan upon beliefs about of agents’
mental states, the following aspects need to be considered:
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Fig. 1: Theory of mind reasoning. Safe driving requires
prediction of other drivers’ intent. The utility of goals
are inferred based on the belief and intrinsic values, and
decisions are made to maximize utility. In the figure, both
drivers drove slightly across the line hence they both believe
the other driver is planning to change lane. The left driver is
more aggressive, having a different intrinsic value than the
right one. Finally, the left driver chose to change lane since
the utility is higher while the other one chose to go straight.

• Among the desired properties of a learning algorithm
(e.g., guaranteed convergence, explainability, computa-
tional feasibility, fast training, ease of implementation,
the degree of awareness of other agents, adaptability
to non-stationary environments), which ones are more
important for intent-aware planning?

• How should the framework unify the learning and plan-
ning process so that existing and future intent prediction
algorithms and low-level planning methods can be fully
exploited?

• The space of combined strategies of all agents can be
huge. What are the important factors in the decision
making process? Particularly, how important are each
goal itself? How would an intent-aware agent’s strategy
be influenced by the goals of other agents?

• How reasonable are the learning outcomes? Will
human-like social behavior (e.g., cooperations and com-
petitions) emerge during this dynamic process?

In this paper, we propose an intent-aware planning frame-
work as well as a learning algorithm. We propose to plan in
the goal space based on the belief of other agents’ intents.
The intuitive idea of intent-aware planning is illustrated in
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Fig. 1, in which an aggressive driver (left) and a mild driver
(right) are driving on a three-lane road, and they are intended
to change lane at the same time. First, both drivers infer
each other’s intent and based on their intrinsic values for
different possibilities of strategy combinations; an expected
utility is computed for their own goal. A goal is then chosen
to maximize their own utility, and low-level planners are
utilized to find actions to achieve the goal.

The proposed framework and algorithm provides a tempo-
ral abstraction that decouples the low-level planning, intent
prediction, and high-level reasoning. The framework brings
the following advantages: i) from a planning perspective,
different intent prediction algorithms and low-level planners
can be easily integrated. ii) By decoupling the belief update
process and the learning process as opposed to POMDP,
learning becomes computational feasible. iii) The temporal
abstraction of planning in a goal space avoids the problem
of sparse feedbacks in the action space. iv) Since any intent
prediction algorithm can be adopted in this framework, no
assumption is made about other agents’ behaviors. The belief
can be updated by various computational methods such as
Bayesian methods and maximum likelihood estimation or
even by communication.

The rest of the paper is organized as follows. In sec. II
we review some related literature. We formally introduce the
proposed planning framework in sec. III and the proposed
learning algorithm in sec. IV. A real-world problem and
our solution under the proposed framework is described in
sec. V. We then describe the designed comparative experi-
ment and analyze the results. Finally, sec. VI concludes the
paper.

II. RELATED WORK

a) Intent prediction: autonomous systems in multi-
agent environments could benefit from understandings of
other agents’ behavior. There is a growing interest in the
robotics and computer vision community to predict future
activities of humans. [1], [2], [3], [4], [5], [6], [7] predict
human trajectories/activities in various settings including
complex indoor/outdoor scenes and crowded spaces. These
research advances are potentially applicable in many domains
such as assistive robotics, robot coordination, and social
robotics. However, it remains unclear how these prediction
algorithms can be effectively utilized for robot planning in
general.

b) Predictive multi-agent systems: Increasing efforts
have been made to design systems that are capable of
predicting other agents’ intents/actions to some level. Pre-
diction algorithms have been explicitly or implicitly applied
to problems such as navigation in crowds and traffic [8], [9],
[10], motion planning [11], [12], and human-robot collabo-
rative planning [13], [14]. Despite the promising results on
specific problems, there lacks a framework to unify learning,
prediction, and planning in general multi-agent systems.

c) Multi-agent Reinforcement learning (MARL): A va-
riety of MARL algorithms have been proposed to accomplish
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Fig. 2: The computational framework. At each time step t, an
observation ot is made by an agent and added to history ht.
The intents/goals of other agents are inferred from history as
belief bt. Based on bt and the intrinsic value θ, the utility
vector ut for all goals is computed. Finally, a goal gt is
choosen to maximize the utility.

Combinational logic

Finite state machine (MDP)

Pushdown automaton (Our method)
Turing machine

Fig. 3: Chomsky hierarchy in formal language theory.

tasks without pre-programmed agent behaviors. [15] clas-
sified MARL algorithms by their field of origin: temporal-
difference RL [16], [17], [18], [19], game theory [20], [21],
and direct policy search techniques [22], [23]. The degree
of awareness of other learning agents exhibited by MARL
algorithms depends on the learning goal. Some algorithms
are independent of other learning agents and focus on
convergence, while some consider adaptation to the other
agents. Many deep multi-agent reinforcement learning algo-
rithms [24], [25], for example, are agnostic of the intention of
other agents. In this paper, we explicitly model other agents’
intentions during the decision making process.

To model other agents’ policies, POMDP is usually
adopted [26], [27]. However, POMDP requires the model of
a multi-agent world, and it is computationally infeasible as
further discussed in Sec. III-A. We believe that by decoupling
the intent inference and the learning process, we can keep
the power of prediction algorithms while making the learning
algorithm computational feasible.

III. INTENT-AWARE HIERARCHICAL PLANNING

We propose an intent-aware hierarchical planning frame-
work in multi-agent environments that plans in the goal
space. The planning process is based on the belief/prediction
of other agents’ intents/goals inferred from the observation
history. Existing low-level planners (e.g., trajectory planners)
are then utilized for action planning to achieve the chosen
goal. In some literature, the goals are called “macro-actions”.
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Specifically, at each time step t, an agent in an environment
makes an observation ot from the environment state st.
The past observations are summarized into a history ht.
According to ht, the agent infers the intent of other agents
as probability distributions bt, which we call belief. A utility
vector ut is then computed for all possible goals G based
on bt and the agent’s intrinsic value θ. θ is a time-invariant
parameter that encodes the agent’s values for different goals,
and how the values would change conditioned on other
agents’ intent. Finally, a goal gt ∈ G is choosen to maximize
the utility. The computational framework is illustrated in
Figure 2.

This framework is motivated and inspired mainly by two
schools of thoughts. Motivated by automata theory, we store
the observation history h; inspired by theory of mind, we
infer other agents’ mental state and reason on the goal level.

a) Automata theory: the study of abstract machines and
automata. It is a theory in theoretical computer science and
closely related to formal language theory. An automaton is
a finite representation of a formal language that may be an
infinite set. Automata are often classified by the class of
formal languages they can recognize, typically illustrated
by the Chomsky hierarchy which describes the relations
between various languages as shown in Figure 3. According
to this classification, traditional MDPs provide a finite state
machine solution to planning problems. Keeping a history h
of past observations makes the agent a pushdown automaton
that goes beyond the finite state machine level. This frees
the agent from the Markovian assumption that limits the
problems in a constrained space.

b) Theory of mind (ToM): the intuitive grasp that
humans have of our own and other people’s mental state -
beliefs, intents, desires, knowledge, etc. Although no one has
direct access to the mind of others, it is typically assumed
by humans that these mental states guide their actions in
predictable ways to achieve their desires according to their
beliefs. A growing body of evidence has shown that since the
young-infant phase, the ability to perform mental simulations
of others increases rapidly [28], [29], [30], [31]. This allows
us to reason backward what others are thinking/intended for
given their behavior. This reasoning process is vital in a
multi-agent environment since each agent’s choice affects
the payoff of other agents [32], [33].

A. A POMDP formulation and its drawbacks

For intelligent agents to adopt the proposed framework, a
key facet is the learning process in which agents learn how to
achieve their goals or maximize their utilities through inter-
actions. As a result of a learning process within a population,
conventions including cooperations and competitions can
emerge dynamically. It is possible to formulate the learning
problem as a POMDP in the belief space:

Q(a, b) =
∑
s

b(s)R(s, a) + γ
∑
o

p(o|b, a)V (bao(s′)) (1)

v(b) = max
a

Q(a, b) (2)

where Q(a, b) denotes the long term return of taking an
action a ∈ A given the belief b of other agents’ intents.
R(s, a) denotes the immediate reward function for taking
action a in state s. A goal g can be then chosen based on
the return:

Q(g, b) =
∑
a

p(a|g)Q(a, b) (3)

However, this POMDP approach has two major limita-
tions: (i) a model of the world (i.e., the underlying tran-
sition probability p(s′|s, a)) is required for most existing
algorithms to update the belief and find the solution of the
Bellman equation 1 and 2. In most cases, the agent cannot
acquire the model of the world, especially in a multi-agent
environment. (ii) Even for model-based methods, solving a
POMDP (which can be converted to a continuous MDP) is
generally computationally infeasible.

To overcome these difficulties, we propose to use an intrin-
sic value θ to parametrize the utility function u(g|b-i;h,θ)
as a function approximation of Q(g, b) in the reinforcement
learning context. This function is designed to encode the
value for different combinations of agents’ intents and to be
computational feasible. The learning method is discussed in
detail in the next section.

IV. INTENT-AWARE MULTI-AGENT
REINFORCEMENT LEARNING

Under the intent-aware hierarchical planning framework,
a rational agent models uncertainty of the world and other
agents via expected values of variables, and always chooses
to pursue the goal g with the optimal expected utility u
among all feasible goals:

gi = argmax
g

u(g|b-i;h,θ) (4)

where gi denotes the goal chosen by agent i, b-i denotes the
belief of intents of all the other agents, which is denoted by
-i.

The utility function u(g|b-i;h,θ) is parameterized by the
intrinsic value θ to encode the utility for agent i under
different combinations of intents of all the agents. In a rein-
forcement learning context, the utility function u(g|b-i;h,θ)
can be interpreted as a function approximation of the q-value
function Q(g, b).

A. Utility function

Intuitively, the utility function should be designed in a
way that the utility of all possible combinations of intents of
all agents can be evaluated. A possible way to parameterize
u(g|b-i;h,θ) is using a matrix θ to represent the long-term
value for all intent combinations. However, this approach is
computationally inefficient to find the expected utility given
the belief of other agents’ intent: i) a joint probability needs
to be computed for all intent combinations; ii) marginal
probabilities need to be computed by summing up the joint
probabilities if some agents are absent or unobservable.

Instead of directly encoding a value matrix, we use a
matrix θ to represent the influence on the value of pursuing
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a goal given the belief of another agent’s intent. Specifically,
the intrinsic value of an agent i is represented by a matrix
θ = (θik,jl) ∈ R(m×n×m), where m is the number of goals
and n is the number of agents. θik,jl is the utility for agent
i to pursue goal gk if agent j is intended for goal gl. Then
the agent choose a goal to maximize the expected utility:

u(gik|b-i;h,θ) =
∑
j

∑
l

θik,jlp(gjl|h)

= θik,ik︸ ︷︷ ︸
agent’s value

+
∑
j 6=i

∑
l

θik,jlp(gjl|h)︸ ︷︷ ︸
influence by other agents

(5)

where gjl denotes the event of agent j pursuing goal gl, and
p(gjl|h) is the corresponding probability given history. When
computing the utility for gik, we have p(gik|h) = 1 and
p(giq|h) = 0 for q 6= k. Hence the utility can be decomposed
into two parts: θik,ik can be interpreted as agent i’s value for
goal gk itself, and

∑
j 6=i

∑
l θik,jlp(gjl|h) is the total value

influence of all the other (observable) agents.
This utility function provides a linear approximation to the

q-value function in a reinforcement learning setting:

Q(h, gik) ≈ u(gik|b-i;h,θ) =< θ,φik(h) > (6)

where φik(h) is a feature vector that each element is given
by φj,l(h) = p(gjl|h), with p(gik|h) = 1 and p(giq|h) = 0
for q 6= k.

B. Explainability and Theoretical Intuition
The proposed utility function provides a highly explain-

able model for learning in multi-agent systems. Highly
complex relationships among multiple agents can arise by
capturing 5 basic types of pair-wise relationships between
agents:

1) Cooperation by achieving the same goal can be charac-
terized by a positive value of θik,jk.

2) Cooperation by achieving different goals, which possi-
bly includes temporal information, can be characterized
by a positive value of θik,jl where k 6= l.

3) Competition on the same goal can be characterized by
a negative value of θik,jk.

4) Competition by pursuing different goals can be charac-
terized by a negative value of θik,jl where k 6= l.

5) A negligible value |θik,jl| < ε indicates gjl has no effect
on gik.

From a theotical point of view, the optimal t-step POMDP
value function is proven to be piecewise linear and con-
vex. In our approximation, the value function v(b) =
maxg Q(h, g) ≈ maxgik < θ,φik(h) > is also piecewise
linear and convex. Hence this utility function provides a
reasonable approximation of the POMDP solution given by
Eq. 2.

Another reason that the proposed utility function is well
suited for reinforcement learning is that it provides desired
convergence properties for learning. Linear function approx-
imation is known to be able to learn efficiently from incre-
mentally acquired data and guaranteed to converge in differ-
ent problem settings, including both episodic and continuing

CrossroadBuilding Entrance

Training Testing

Fig. 4: Experiment settings of multi aerial robot surveillance.
Left: the training scene. Right: the testing scene. At any time
frame, each of the aerial robots can choose to monitor one
of the targets in the goal space: buildings, entrance points
to the town, and crossroads. Humans enter the town from
entrance points randomly and either enter a building or exit
from an entrance point. The goal of the aerial robots is to
capture as many as possible people that enter the buildings
of interest.

cases [34]. Non-stationary target functions (target functions
that change over time) can also be handled for generalized
policy iteration. Hence different learning algorithms can be
applied, including bootstrapping/non-bootstrapping and on-
policy/off-policy algorithms.

C. Reachable Equilibrium

In a multi-agent environment, one important aspect to
consider for learning agents is whether the learning algorithm
will reach a meaningful solution concept, which identifies
a certain subset of outcomes in a game. Among different
solution concepts, Nash equilibrium is the most influential
one describing the situation that no agent would want to
change his/her strategy if he/she knew what strategies the
other agents were following. In the proposed framework, the
prediction of other agents’ intent provides a one-step look
ahead of their strategies. At each time step, the agent makes a
game theoretic best response based on his/her belief of other
agents’ strategy. Hence a Nash equilibrium will be reached
by definition when the agents’ decisions stabilize.

However, whether the agents’ decisions will stablilize is a
subtle issue. Consider the case when two agents on opposite
sides of a bridge and both agents want to pass through.
The interaction process can easily go into a deadlock that
an equilibrium cannot be reached: at time t0 both agents
choose to go, and at time t1 both agents choose to yield,
etc. Computationally, having asynchronous decision-making
agents can solve this problem. Instead of making a new
decision at each time step, an agent chooses to keep the
previous decision according to a certain probability. At some
point, the asynchronous agents will break the deadlock and
reach an equilibrium.

7536



(a) (d)(c)

(e)

(b)

Fig. 5: The simulation environment. The viewing frustums
of aerial robots are rendered in blue lines. (a) Birdview of
the city scene. Each row of (b)(c)(d) shows the vision and
mind of an aerial robot agent: (b) vision sensor input of an
aerial robot, (c) intent and path prediction of other agents,
and (d) current goal of the aerial robot. (e) Other views from
street cameras.

V. MULTI AERIAL ROBOT SURVEILLANCE

One of many motivations of our research effort on intent-
aware multi-agent reinforcement learning is the application
of multi-aerial robot surveillance, in which each robot needs
to infer both the humans’ intents and teammate robots’
intents to accomplish their tasks. Humans’ intents need to be
inferred to capture suspicious activities, while other robots’
intents need to be inferred to maximize the payoff of the
team (e.g., by avoiding repeating other robots’ actions). This
multi-agent environment is neither purely cooperative nor
competitive, and the goal is to learn a strategy for aerial
robots to perform the task distributively.

Specifically, we experiment our algorithm in the following
setting as shown in Fig. 4. In a city area, humans can enter
the scene randomly from entrance points of the area, and
either exit the scene from other entrance points or enter a
building of interest. In other words, the goals for humans are
entrance points or buildings. We are interested in finding out
the people who enter the buildings of interest using a team
of aerial robots, each of which is capable of monitoring a
static target or tracking a moving target. Each time an aerial
robot’s camera sees a human entering a building, we consider
it to have captured one suspicious human.

For a city scene, we define three types of static tar-
gets/goal: entrance points, buildings, and crossroads. At each
time step, a robot can choose to monitor a static target or
track an observed human. A given path planner will drive
the robot to the target after the decision.

A. Method

In this subsection, we describe our method for the task
above under the intent-aware reinforcement learning frame-
work. Specifically, we describe i) the learning algorithm
adopted for estimating the parameter θ, ii) how to deal with
a varying number of agents and goals, and iii) how to predict
the intents of other agents in this setting.

Initial value of agent A

Intent prediction of other agents

Decision making of agent A

The best goal
Optimal path for
the best goal

Utilities for different goals

Agent A

Other agents
Predicted paths for other agents

Fig. 6: Decision making process of an intent-aware agent
in the simulation environment. The agents’ positions are
represented by black circles.

a) Average award learning: the problem described
above is a continuing problem (non-episodic) that the dis-
counted reward setting does not apply. To learn a strategy
for each aerial robot, we adopt the differential semi-gradient
Sarsa algorithm to learn the parameter θ, where the temporal-
difference (TD) error to update θ is given by the estimation
error of the average reward [35]

δ = rt+1 − r̄t +Q(ht+1, gt+1;θ)−Q(ht, gt;θ) (7)

where r̄ is an estimate of the average reward. At time t +
1, the parameter θ and the average reward estimation r̄ is
updated by:

θt+1 = θt+1 + αδ∇Q(ht, gt;θt) (8)

r̄t+1 = r̄t + βδ (9)

where α and β are learning rates. Algorithm 1 shows the 1-
step differential semi-gradient Sarsa for our problem, which
can be generalized to n-step bootstrapping.

b) Typed agents and goals: another difficulty for solv-
ing this problem is that at different time steps, an agent can
have a different number of agents to interact with and various
number of goals to choose from, e.g., the robot observes
more people at some point. This sets an indefinite size for θ.
To handle this, we define θ in a compact way. Each element
θt(i,k,j,l) represents the value influence of an agent of type
t(j) choosing a type of goal gl on the event that agent of
type t(i) choosing a type of goal gk. Here t is a mapping
function from agents and goals to the corresponding types.
Now the q-function becomes:

Q(h, gik) =
∑
j

∑
l

θt(i,k,j,l)p(gjl|h) (10)

c) Intent prediction: during the interaction process, we
use a Bayesian approach to predict other agents’ intents g
based on observation history h:

p(g|h) =
p(g)p(h|g)

p(h)

∝ p(g)p(h|g)

(11)

where p(g) is a prior probibility given by the agent’s own q-
value estimation of the goal or a uniform distribution. p(h|g)
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Algorithm 1: Intent-aware learning in continuing tasks
Input : Linear approximation function

Q(h, g;θ) =< θ,φ(h) >
Parameters: Learning rate α, β > 0

Goal update frequency f
1 Initialize θ, r̄ arbitrarily (e.g., θ = 0, r̄ = 0)
2 Initialize obervation o and goal g
3 Initialize history h as an empty stack
4 while True do
5 Plan for g, observe r, o
6 Push o into h: h′ ← [h, o]
7 if r == 0 and random() < 1

f then
// Keep goal with randomness

8 continue
9 else

10 Compute φ(h, o) by inferring intent of other
agents

11 Choose goal g′ as a function of Q(h, ·;θ) (e.g.,
ε-greedy)

12 if r! = 0 then
13 δ ← r − r̄ +Q(h′, g′;θ)−Q(h, g;θ)
14 r̄ ← r̄ + βδ
15 θ ← θ + αδ∇Q(h, g;θ)
16 end
17 o← o′, g ← g′

18 end
19 end

is a likelihood term that measures how likely the observation
history is if the agent is pursuing goal g. It is given by the
following Gibbs distribution:

p(h|g) =
1

z
exp {−βE(h|g)}

=
1

z
exp {−βd(Γo,Γp)}

(12)

where the engergy function E(h|g) is defined by a distance
d(Γo,Γp). Γo is the observed trajectory from history h, and
Γp is a predicted trajectory assuming the agent is heading for
goal g. We compute the distance d(Γo,Γp) between Γo and
Γp by the dynamic time warping (DTW) algorithm [36]. The
intuition is that the closer the observed trajectory is to the
predicted one, the higher the probability is for goal g. β is the
inverse temperature that controls the distribution landscape
of the distribution. z is the partition function of the Gibbs
distribution to normalize the probability to 1.

B. Simulation Environment

For the robot agents, the goal space is the set of the pre-
viously defined targets (humans, buildings, and entrances);
the action space includes: forward, backward, left, and right.
The observations of other agents are their positions at each
time step. The state is composed of the goal and position of
the agent itself and the observation of other agents.

We simulate the environment in V-REP [37] as shown in
Fig. 5. The vision sensor inputs of aerial robots are published

TABLE I: Surveillance capture rate

Testing Accuracy(%)
Training Scene Testing Scene

Training Iterations 100 200 300 500 1000 —
random 29.7 29.7 29.7 29.7 29.7 34.4
greedy 31.4 31.4 31.4 31.4 31.4 35.2
RNN-POMDP 17.3 22.9 20.8 21.0 23.6 14.3
ours 13.8 19.1 60.3 62.4 59.3 77.3

Models trained for 1000 iterations in the training scene are used
for testing in the testing scene.

(a) Robot vs. Robot (different goals) (b) Comparison

Fig. 7: Visualization of the learned value landscape. (a) The
value influence by other robots if they are intended for a
different goal (the goal types can be the same) than the agent
robot. Regardless of what the other robots are intended to, the
value for monitoring buildings is the highest. (b) Comparison
between the value influences from different types of agents.
From this comparison we see that: i) a robot agent has
a positive value for monitoring a building while having a
negative value for monitoring an entrance point. ii) The value
for two robots to monitor different buildings is high while
there is a penalty for monitoring the same buildings. iii)
There is a value for a robot to monitor the same building a
human is intended to. iv) Intents of other agents have almost
no influence on the value of monitoring an entrance point.

to ROS topics [38], and humans are detected using the
YOLO [39] object detector. Once a target is given to an
aerial robot, a path is planned to monitor/track the target
using [40]. In the experiments, we assume that the aerial
robots know each other’s position but not their goals. They
can compute an observed human’s position and share to other
robots. The targeted buildings are known to the robot agents
prior to the start of the simulation. At each simulation time
step, a state including all observable agents’ positions will
be sent to robot agents. A reward will be sent to robot agents
if a human agent enters a building. A reward of 1

m will be
assigned to the m robots who observe the entering. A reward
of − 1

n will be assigned to all n robot agents if a human enters
a building unobserved. In our experiments, three aerial robot
agents are simulated in the experiments, and human agents
enter the scene randomly. The training scene has 5 buildings
of interest while the testing scene has 4, and the locations
are different.

C. Comparative Methods

We compare our method against the following baselines:
1) Random. The robot agent chooses a random goal to

monitor/track after a certain number of simulation iterations.
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Frame 96 Frame 99Frame 94

Agent 1

Agent 2

Agent 3

Frame 0 Frame 131 Frame 208Frame 122Frame 118

Fig. 8: Cooperative behavior of the learned model. Each row demonstrates the values of different goals (the higher the
value the higher intensity of red), the chosen goal, and the planned path for a robot at different time frames. The values of
monitoring buildings are higher than monitoring entrances or crossroad. At the beginning, all robot agents intended for the
farthest building since they thought it is less likely for the other robots to monitor. During the process, the agents realized that
the other agents might have chosen the same goal as themselves and chose another goal accordingly (e.g., agent 2 at frame
94). The agents chose different goals iteratively and finally reached an equilibrium that three robots were monitoring three
different buildings. This dynamic process reflects how humans naturally interact with each other in a complex environment.

2) Greedy. The robot tracks humans whenever a human
is observed. Otherwise, a goal will be chosen at random.

3) Recurrent neural network (RNN)-POMDP [41]. Since
the agents have no access to the underlying model of the
world, a model-free method is needed to compare our method
against POMDP algorithms. A RNN-POMDP agent directly
approximates the Q function by

Q(g, o) = f(o, g;W ) (13)

where W is the weight in the RNN. In our experiments,
we use the LSTM(512)-FC(128)-FC(32) architecture, where
FC(n) represents a fully connected layer with n hidden
nodes. In order to prevent the network from diverging
(numeric explosion of weights), we treat “15 people have
entered buildings” as an episode, and use Sarsa to train the
network with an ε-greedy policy.
For both RNN-POMDP and our method, the robot agents
share the learned policy during the training stage. Tan [42]
has shown that reinforcement learning agents can learn faster
and converge sooner in this way.

D. Experiment Results & Discussions

Fig. 6 demonstrates the decision-making process of our
agents, and Table I shows the quantitative results of our
experiments. The evaluation metric is defined by no

ne
where

ne is the total number of people that entered buildings and no
is the number of observed ones. It shows the testing capture
rate on the training scene of trained models after 100, 200,
300, 500 and 1000 training iterations (simulation steps that
reward occurs). It also shows the testing capture rate on the
testing scene using the final model.

Our method outperforms all baseline methods and achieves
a significant increase in the capture rate even in a novel
situation. After 300 iterations of value function update, it

has converged to the global optimal. We also experimented
our method with random initializations for the parameter θ
and 5-step Sarsa, and they all achieved similar performance.
More importantly, our method is able to transfer the learned
strategy to a novel scene and achieves the best performance.

What is the best strategy? The intent-aware agents even-
tually learned a strategy that reflects two facts: i) it is more
efficient to monitor a building directly instead of tracking
human agents. ii) Each robot agent needs to monitor a dif-
ferent building. This means our method successfully learned
the underlying value as long as cooperation. A capture rate of
60% is achieved, for 3 robot agents monitoring 5 buildings
at any time frame. From the baseline results, we can see
that greedy algorithm performs slightly better than random,
since tracking a human agent sometimes distracts the robot
agent. In the experiments, we see that the RNN-POMDP
agent learned to monitor a building; however, all three robot
agents decided to monitor the same building according to the
best approximated Q-value. Hence they achieved a capture
rate of 20% (one out of five buildings).

How meaningful is the learned θ? Figure 7 shows a
visualization of the value landscape given by θ. The intent-
aware agents learned meaningful aspects including i) it is
rewarding to monitor buildings, especially the ones that no
other robot is monitoring. ii) Monitoring the same building
with other robot agents is undesirable. iii) Monitoring a
building that an observed human is targeting at is rewarding.
This demonstrates that the agent learns the core values of the
task, though no explicit knowledge is given. This is important
for transferring the learned strategy to novel scenes.

How does the cooperation emerge and reach equilibrium?
Figure 8 shows the interesting cooperative behavior occurred.
All robot agents are well aware that it is rewarding to monitor
different buildings than other agents. At the beginning, they
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were targeted at the farthest building since it is less likely
for the other robots to monitor. After a few iterations, they
realized there might be a conflict of interest and changed their
mind. Finally, three robots are monitoring three different
buildings. An equilibrium naturally emerged during this
dynamic process, which resembles human interactions. After
that, the robots sometimes switch to another un-monitored
building at random for the same utility as the current one,
which also matches human behaviors.

How would the design of rewards affect the learned behav-
iors? In our experiments, we found that assigning rewards
to those robots who capture entering is more effective than
assigning rewards to every robot in the team. Cooperation
might not emerge if a reward is distributed to every robot
since a robot can be credited even if it has made a wrong
decision. This is surprisingly similar to human behaviors:
teamwork works best when top performers are rewarded.

VI. CONCLUSION

In this work, we consider the problem of multi-agent
planning as well as learning in a goal space. The pro-
posed planning framework infers other agents’ intents and
makes decisions based upon the prediction and the intrinsic
value. Rather than formulating the problem as a POMDP,
we decouple the intent prediction and the high-level plan-
ning process, keeping the capability of the algorithm while
making the method computationally feasible. Experiments
show that our algorithm achieves the best performance, and
behaviors similar to humans emerges under the proposed
framework. More sophisticated intent prediction and high-
level planning algorithms can be developed independently in
future research, and integrated into the proposed framework.
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